91 research outputs found

    Antimicrobial efficacy of different concentration of sodium hypochlorite on the biofilm of Enterococcus faecalis at different stages of development

    Get PDF
    Persistent infection of the root canal due to the presence of resistance bacterial species, such as Enterococcus faecalis, has always been one of the most important reasons for endodontic treatment failure. This study investigated the antimicrobial efficacy of 1%, 2.5 % and 5% sodium hypochlorite in eliminating E. faecalis biofilms at different stages of development. In this study 4-, 6- and 10-week-old E. faecalis biofilms were subjected to one of the following approaches: phosphate-buffered saline solution (PBS) or 1%, 2.5% and 5% NaOCl. Dentin chip suspensions were used for colony forming unit (CFU) counting to estimate remaining E. faecalis counts. Statistical comparison of the means was carried out with Kruskal-Wallis test, and pair-wise comparisons were made by Mann-Whitney U test, at a significance level of P<0.05. The results showed that 2.5% and 5% NaOCl completely eliminated E. faecalis biofilms in three stages of biofilm development, whereas 1% NaOCl resulted in 85.73%, 81.88% and 78.62% decreases in bacterial counts in 4-, 6- and 10-week-old biofilms, respectively, which was significantly more than those with PBS (p<0.05). The bacteria in mature and old biofilms were more resistant to 1% NaOCl than were the bacteria in young biofilms. Overall survival rate and residual bacteria increased with biofilm aging

    In Vitro Cytotoxicity and Setting Time Assessment of Calcium-Enriched Mixture Cement, Retro Mineral Trioxide Aggregate and Mineral Trioxide Aggregate

    Get PDF
    Introduction: The present study sought to evaluate and compare biocompatibility and setting time of Retro mineral trioxide aggregate (MTA), calcium-enriched mixture (CEM) and Angelus MTA. Methods and Materials: CEM cement, Angelus MTA and Retro MTA were assessed in set and fresh states. Extracts transformed to each cavity of three 24-well plates in which 1×104 cell were seeded into each well 24 h earlier. All specimens were incubated in a humidified incubator with 5% CO2 at 37°C. Mosmann’s tetrazolium toxicity (MTT) assay was used to determine in vitro cytotoxicity on L929 mouse fibroblast cell line. Cell viability was determined at 1, 24, and 72 h after exposure. The initial setting time was measured by 113.4 g Gilmore needle testing. Then, final setting times were assessed by the 456.5 g Gilmore needle. Data comparisons were performed using the analysis of variance (ANOVA) and Tukey's post hoc test (α=0.05). Results: All groups in both forms indicated higher cell vitality compared to positive control group (P&lt;0.001). After 24 h, the set Retro MTA showed better biocompatibility compared to set CEM and set Angelus MTA (P&lt;0.001). Retro MTA showed significantly lower initial and final setting time compared to CEM and Angelus MTA (P&lt;0.001). Conclusion: Our results indicated the good cell viability values of Retro MTA and relatively short period of setting time. It seems a promising alternative material in clinical situations where accelerated setting is required. However, more clinical and in vivo investigations are needed for a clear decision making.Keywords: Biocompatibility; Calcium-Enriched Mixture; Mineral Trioxide Aggregate; Retro MTA; Setting Tim

    Nanostructured multifunctional stimuli-responsive glycopolypeptide-based copolymers for biomedical applications

    Get PDF
    Inspired by natural resources, such as peptides and carbohydrates, glycopolypeptide biopolymer has recently emerged as a new form of biopolymer being recruited in various biomedical applications. Glycopolypeptides with well-defined secondary structures and pendant glycosides on the polypeptide backbone have sparked lots of research interest and they have an innate ability to self-assemble in diverse structures. The nanostructures of glycopolypeptides have also opened up new perspectives in biomedical applications due to their stable three-dimensional structures, high drug loading efficiency, excellent biocompatibility, and biodegradability. Although the development of glycopolypeptide-based nanocarriers is well-studied, their clinical translation is still limited. The present review highlights the preparation and characterization strategies related to glycopolypeptides-based copolymers, followed by a comprehensive discussion on their biomedical applications with a specific focus on drug delivery by various stimuli-responsive (e.g., pH, redox, conduction, and sugar) nanostructures, as well as their beneficial usage in diagnosis and regenerative medicine.Peer reviewe

    Effect of water storage on ultimate tensile strength and mass changes of universal adhesives

    Get PDF
    The aim of the present study was to evaluate the influence of water storage on micro tensile strength (µTS) and mass changes (MC) of two universal adhesives. 10 disk-shaped specimens were prepared for each adhesive; Scotchbond Universal (SCU) All-Bond Universal (ABU) and Adper Single Bond 2 (SB2). At the baseline and after 1 day and 28 days of water storage, their mass were measured and compared to estimate water sorption and solubility. For µTS test, 20 dumbbell shaped specimens were also prepared for each adhesive in two subgroups of 1 day and 28 days water storage. MC was significantly lower for SCU and ABU than SB2 (P < 0.05) at both time intervals. In all three adhesives, the MC was significantly lower at 28 days compared to that at 1 day (P < 0.05). Similarly, µTS was significantly higher for SCU and ABU than SB2 at both storage intervals (P < 0.05). After 28 days, µTS increased significantly for universal adhesives (P < 0.05). MC and µTS of adhesives were both material and time dependent when stored in water; both universal adhesives showed less water sorption and higher values of µTS than the control group

    Effects of different intra canal medicaments on the push out bond strength of endodontic sealers

    Get PDF
    One of the essential properties of the root canal sealers is the adhesion to root canal dentin and their higher bond strength decreases the microleakage. The aim of the present study was to compare the effect of Different Intracanal medicaments on the push out bond strength of AH26 and MTA Fillapex sealers. A total of 104 one-rooted extracted human teeth were divided into 4 (n=26) experimental groups. After the cleaning and shaping, the root canals were filled with Ca(OH)2, triantibiotic paste (TAP), Metapex or 2% chlorhexidine gel for two weeks. Then, intracanal medicaments were rinsed away and the samples in the sub-groups were obturated with gutta-percha and AH26 or MTA Fillapex sealers. After two weeks incubation, 2-mm-thick middle section of each root was then subjected to push-out testing. Data were analyzed with two-way ANOVA and LSD test. With all the intracanal medicaments, the overall mean of bond strength values were significantly higher with AH26 compared to MTA Fillapex (p<0.05). With the use of MTA Fillapex the maximum and minimum means of bond strength values were recorded with CHX and Metapex and for AH26 were recorded with Ca(OH)2 and chlorhexidine, respectively. The bond strengths of sealers to dentin are under the influence of pre-treatment with intracanal medicaments. Under the limitations of the present study, the effect of TAP on the bond strength of endodontic sealers was not negative
    corecore